skip to main content


Search for: All records

Creators/Authors contains: "Xie, Wei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Large-scale manufacturing of induced pluripotent stem cells (iPSCs) is essential for cell therapies and regenerative medicines. Yet, iPSCs form large cell aggregates in suspension bioreactors, resulting in insufficient nutrient supply and extra metabolic waste build-up for the cells located at the core. Since subtle changes in micro-environment can lead to a heterogeneous cell population, a novel Biological System-of-Systems (Bio-SoS) framework is proposed to model cell-to-cell interactions, spatial and metabolic heterogeneity, and cell response to micro-environmental variation. Building on stochastic metabolic reaction network, aggregation kinetics, and reaction-diffusion mechanisms, the Bio-SoS model characterizes causal interdependencies at individual cell, aggregate, and cell population levels. It has a modular design that enables data integration and improves predictions for different monolayer and aggregate culture processes. In addition, a variance decomposition analysis is derived to quantify the impact of factors (i.e., aggregate size) on cell product health and quality heterogeneity.

     
    more » « less
  2. Abstract

    The rapidly expanding market for regenerative medicines and cell therapies highlights the need to advance the understanding of cellular metabolisms and improve the prediction of cultivation production process for human induced pluripotent stem cells (iPSCs). In this paper, a metabolic kinetic model was developed to characterize the underlying mechanisms of iPSC culture process, which can predict cell response to environmental perturbation and support process control. This model focuses on the central carbon metabolic network, including glycolysis, pentose phosphate pathway, tricarboxylic acid cycle, and amino acid metabolism, which plays a crucial role to support iPSC proliferation. Heterogeneous measures of extracellular metabolites and multiple isotopic tracers collected under multiple conditions were used to learn metabolic regulatory mechanisms. Systematic cross‐validation confirmed the model's performance in terms of providing reliable predictions on cellular metabolism and culture process dynamics under various culture conditions. Thus, the developed mechanistic kinetic model can support process control strategies to strategically select optimal cell culture conditions at different times, ensure cell product functionality, and facilitate large‐scale manufacturing of regenerative medicines and cell therapies.

     
    more » « less
  3. null (Ed.)